Lecture no.8

Transport Properties of Nonideal Plasmas
Introduction

It is known that electrophysical properties of plasma are primarily
defined by the electron component. Electrical conductivity weakly
nonideal plasma at I'<<1 can be determined by well known Spitzer
theory. For strongly coupled plasma (I'>1) we use a computer
simulation molecular dynamic method. The transport properties of
nonideal plasma at the moderate values of coupling parameter can be
investigated by kinetic equation methods.

Electrical conductivity of weakly ionized plasma

The electrical conductivity o is defined by the number density of
electrons n. and their mobility x:

In the case of nonideal plasma, these quantities are connected by well
known expressions from Kkinetic theory. The number densities of
electrons n, and ions Nn; are related by the Saha formula (see, lecture
no.5):
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where N, is the number density of atoms; > and > are statistical sums

of atoms and ions, respectively; | is the ionization potential. Due to the
absence of complex ions in an ideal plasma, we have n, =n,. At low

temperatures the degree of ionization is low (n, <<n,):

n, = V Klna : (3)
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Electron—ion and electron—electron interactions can be ignored in a
weakly ionized plasma, therefore, we consider only interactions of
electrons with atoms (molecules) of a neutral gas. Such model of plasma
is called the Lorentz gas model.

We will use the Boltzmann equation in order to derive the
expression for mobility of electrons. In stationary and spatially
homogeneous cases the Boltzmann kinetic equation for the distribution

—

function of electrons f(v) in an electric field F has the following form:
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It should be noted that the left-hand side of this equation describes the
field effect and the right—hand side is responsible for the variation of the
number of electrons in an element of phase volume due to collisions;
I.(f) is the collision integral. We assume small deviations of f(v)
from equilibrium due to the fact that the electron mass is much smaller
than the atomic mass. Then, f(v) should be close to spherically
symmetric and can be represented as follows:

f(v)=f,(0)+cos$f (v) (5)

where 4 is the angle between the directions of the velocity and electric
field. Under conditions of thermodynamic equilibrium the symmetric

part of the distribution function f;(v) is maxwellian.  Notice that the

nonsymmetric part f(v) is important for calculation the electron

mobility, and, consequently for investigation of plasma electrical
conductivity.
Substituting the expression (5) for f(v) in the kinetic equation

(4), we obtain the following formula:

—
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The direction of electron’s velocity is strongly changed at each
collisions and this direction does not depend on their velocities before
collisions. Then

. () =—v(0)1,(0); v(0)=n0q(0) | (7)

where q(v) is the transport cross section of electron-atom scattering
and v(v) is the corresponding electron—-atom collision frequency. The
electrons are mainly in chaotic thermal motion and drift in the direction

opposite to the field F. The drift velocity (c?)=—ﬂ|f) is defined as the
mean electron velocity over the time exceeding greatly the time between
individual collisions and given by the following expression:

wzjucosm(D)dﬁzjucoszgfl(ﬁ)dﬁ | (8)

because  f,(v) does not make contribution to @. Substituting the
expression for f(v) from kinetic equation in the formula for drift

velocity @, we have the following relation for mobility of electrons
u=owlF:

udu
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Integrating over the angles and substituting the maxwellian distribution
for f,(v), and using the fact that of, /o0 =—fo/v? we finally get:

U= \/7 ]2 v exp —0—2 do
T mu; 4 v(D) 205 ’ (10)

here o, =\k;T/m is the thermal velocity of electrons. Expressions (9)

and (10) describe the mobility of electrons in the Lorentz plasma
approximation. In should be noted that formula (10) is useful for
calculation of electron’s mobility in the real plasma. But in this case we

should know electron-atom collision frequency v(v).
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The expressions (9) and (10) are valid at the following conditions:
1) The binary collision approximation is valid and the neutral gas
must be sufficiently rarefied, i.e. N,q>° <<1.

2) The temperature must be sufficiently high and the thermal
wavelength of the electron sufficiently small, so that we can ignore

the interference of the electron on atoms, i.e. N,04, <<1.

3) The potential energy of the Coulomb interaction between electrons
must be much smaller than their Kkinetic energy, i.e.

e’n® /k T <<1.
4) The plasma must be nondegenerate, i.e. 72°n"° /mk,T <<1.
5) The correlation between atoms can be neglected, i.e.

n.b<<1; nalkgT <<l (a and b are the coefficients of the
van der Waals equation of state for the neutral gas).

It is convenient to integrate over the electron energy E =mv?/2 instead
of the velocity. Then, we have for mobility the following expression:
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where the collision frequency is v(E) =n,q(E)v2E/m . Introducing the

mean (effective) collision frequency v and cross section J , one can
write:

r
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In the simplest case when the -electron—neutral collision can be
approximated as a scattering on a hard sphere of a diameter d, the

transport cross section is independent of energy, i.e. q(E)=zd*/4. In
this case by averaging over energies we have the following values:

q=nd*/4;
v = (377 /27/2)nad ‘or (14)

In the case of real plasma the transport cross section is a function of
energy. One can conclude that if the dependence d(E) is known, the

mean cross sections J(T) can also be easily calculated. A large amount
of reference data on electron—-atom and electron—molecule scattering
cross—sections is available from special books. As an example the data
of averaged cross—sections for atoms of alkali metals are shown in the
table 1.

T WK Li Na K Cs TAPK Li Na K Cs
1.0 165 150 153 141 06 633 731 700 508
19 144 140 136 128 08 64l 673 652 7.63
14 126 129 121 117 3.0 590 623 610 T7.32
16 111 117 109 10.8 33 563 570 573 T.M
18 001 106 984 101 3.4 532 541 541 6.79
2.0 503 873 596 0.42 16 508 507 512 67
2.9 511 873 5320 .80 3.5 180 477 457 637
2.4 TA6 797 756 8.41 40 159 451 464 620

Table 1. Averaged transport cross sections of scattering of electrons
from atoms of alkali metals, G(T) in units of 10%a;.

The electrical conductivity of plasma can be estimated by the following
expression:

o=38. 106—— ohm~cm™
where T is the average cross sectlon in units of 10™cm?* and T is the
temperature in K,



